
Grounding the Unobservable in the Observable:
The Role and Representation of Hidden State

in Concept Formation and Refinement
Clayton T. Morrison

Experimental Knowledge Systems Lab
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003, USA

clayton@cs.umass.edu

Tim Oates
Artificial Intelligence Lab

Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139

oates@ai.mit.edu

Gary King
Experimental Knowledge Systems Lab

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA 01003, USA
gwking@cs.umass.edu

Introduction
One of the great mysteries of human cognition is how we
learn to discover meaningful and useful categories and con-
cepts about the world based on the data flowing from our
sensors. Why do very young children acquire concepts like
support and animate (Leslie 1988) rather than between three
and six feet wide or blue with red and green dots? One an-
swer to this question is that categories are created, refined
and maintained to support accurate prediction. Knowing that
an entity is animate is generally much more useful for the
purpose of predicting how it will behave than knowing that
it is blue with red and green dots.

The idea of using predictability, or a lack thereof, as the
driving force behind the creation and refinement of knowl-
edge structures has been applied in a variety of contexts.
Drescher (1991) and Shen (1993) used uncertainty in ac-
tion outcomes to trigger refinement of action models, and
McCallum (1995) and Whitehead and Ballard (1991) used
uncertainty in predicted reward in a reinforcement learning
setting to refine action policies.

Virtually all of the work in this vein is based on two key
assumptions. First, an assumption is made that the world is
in priciple deterministic; that given enough knowledge, out-
comes can be predicted with certainty. Given this, an agent’s
failure to predict implies that it is either missing information
or incorrectly representing the information that it has. Sec-
ond, it is assumed that knowledge structures sufficient for
the task can be created by combining raw perceptual infor-
mation in various ways. That is, everything the agent needs
to make accurate predictions is available in its percepts, and
the problem facing the agent is to find the right combina-
tion of elements of its perceptual data for this task. (See
(Drescher 1991) for an early and notable exception.)

Our position is that the first of these assumptions repre-
sents an exceedingly useful mechanism for driving unsuper-
vised concept acquisition, whereas blind adherence to the
second makes it difficult or impossible to discover some of
the most fundamental concepts. To better understand this
position, consider the child-as-scientist metaphor (Gopnik
1997). Generally speaking, scientists aim towards an under-
standing of the way the world works by developing theories

Copyright c 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that explain as many observable phenomena as compactly
and accurately as possible. Predictiveness is central to this
enterprise. If theory A makes either more accurate predic-
tions or a larger set of verifiable predictions than theory B,
then theoryA is preferred. To explain observed phenomena,
scientists often posit the existence of unobservable entities
(Harré 1970; 1986). No one has ever seen gravity or black
holes, but they explain such a wide range of observable phe-
nomena so accurately that their existence goes virtually un-
challenged. Scientific progress would come to a standstill if
not for the ability to posit and collect evidence for the ex-
istence of causally efficacious entities that do not manifest
themselves directly in our percepts in the same way that,
say, the color blue does.

To bring the discussion back to concept acquisition in
children, consider the following example. Humans clearly
cannot perceive the mass of an object in the same way that
they can perceive its color. Though it may seem as if we per-
ceive mass directly from visual observation this is an illusion
grounded in a vast corpus of knowledge about objects gath-
ered over a lifetime of physical interaction with the world.
Without this grounding we would be, like an infant, unable
to make judgements about the masses of objects based solely
on their visual appearance. Indeed, it is equivocal whether
we would even have a concept of mass at all.

Representing the Unobservable
How might a child that cannot perceive mass directly ever
hope to gain a concept of mass? Our answer is that the child
posits the existence of a property that explains how objects
behave and that they later learn that this property is named
“mass”. Objects with different masses yield different propri-
oceptive sensations when you lift them and different haptic
sensations when you drop them on your foot, they require
different amounts of force to get them moving at a given
speed and they decelerate at different rates when that force
is removed. Positing a hidden feature of objects that explains
and is correlated with any of these observations suffices to
predict (to some degree of accuracy) all of the others. That
is, this hidden quantity makes a wider array of more accu-
rate predictions than any directly observable feature such as
color or size.

So far we have mentioned one of the fundamental triggers
for positing new unobservable representational elements:
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failure to predict. But an account of how the neonate human
or machine might support the acquisition of knowledge of
these hidden states requires a representational infrastructure
that can

� accommodate recognition of failure to predict, and

� accommodate representations whose content is funda-
mentally reviseable and extendable.

The first property highlights that these representations must
provide some way for the agent to recognize that something
has gone wrong: its current representational repertoire fails
to be useful in predicting some aspect of the environment.

The second property is a little more complicated. First, it
highlights that, in its intial, naked form, the proposed new
representational element serves simply as a “place-marker”
associated with the context of the failure to anticipate some
aspect of the world. At this point, the agent does not even
know whether the new element represents a hidden state,
some unobservable property, or some unseen process. Next,
given the new element, the agent must now search for condi-
tions under which it can reliably predict its state value. Once
these conditions are discovered, the state value of this repre-
sentational element can then be used to make predictions of
the the previously unpredictable aspects of the world. These
conditions are themselves states of the world that are directly
observable or can be accurately anticipated by the agent.
They are associated with the newly constructed represen-
tational element, serving as conditions for determining its
state value. In this way, the content (the meaning) of the
proposed new representation of an unobservable aspect of
the world is fundamentally revisable and extendable.

Interestingly, a common theme is shared among several
computational models of representation learning along these
lines (e.g., (Drescher 1991; Kwok 1995)). Namely, the base
data structure for a representational unit in these discov-
ery systems is a triple involving preconditions, some action,
and postconditions; following Drescher’s (1991) terminol-
ogy, we will refer to this data structure as a schema (see
Figure 1).

Action

PostconditionsPreconditions

Figure 1: Base structure of representation - preconditions,
action, postconditions.

The preconditions and postconditions initially consist of
sets of predicates whose values represent directly observable
states of the world (e.g., colors, shapes, relative positions
of visual objects in the retinal field), and later may include
newly learned states (e.g., states that are not directly observ-
able, including new representational elements whose value-
determining conditions have already been learned). The
actions can be simple physical-motor actions (e.g., open-
ing one’s mouth), or more abstracted activities that them-
selves consist of a structured set of composed actions (e.g.,

carrying out an experiment). Irrespective of where along
the continuum from atomic/concrete to compound/abstract
these actions are specified, they all share in common the key
property of affecting, in some way, what future input the
agent will receive from the world. In this view, there is no
such thing as a system that is purely disembodied or pas-
sive with respect to the environment it is learning about: the
world affects the agent and the agent affects the world (see
(Bickhard 1993)). Furthermore, note that even “passive” ac-
tions that don’t directly causally impinge on states of the
world, such as passively observing a scene, still involve an
“action” that affects the subsequent input – e.g., passive ob-
servation specifically involves sitting still and not altering
states of the environment while there is a passage of time.

Constructing a New Predicate
Within this representational framework, it is now possible to
create (discover) new predicates that may correspond to un-
observable states or properties of the world. These new pred-
icates are then useful for deterministically predicting previ-
ously unpredictable behavior of the world. Following the
base representational form of the schema, and using a “just
so” story involving the dicovery of a mass-like concept, such
creation and discovery works as follows:

Initially, the agent does not know how to predict the out-
comes of actions or interactions involving objects and such
diverse outcomes as proprioreceptive feedback when lifting
an object, haptic feedback when the object is dropped on
one’s foot, the force required to achieve some velocity in
moving the object, and the rate of deceleration of the object
when one stops pushing. Instead, the different outcomes of
these events are simply experienced as they happen. Fig-
ure 2 depicts a pair of schemas representing two different
experiences of lifting objects that are otherwise perceptually
identical (also in conditions that are essentially identical).

Lift Object Muscle strain low

Object above Floor
Object in Hand

Object is small

Object on Floor
Object in Hand

Lift Object

Object above Floor
Object in Hand

Muscle strain highObject is small

Object on Floor
Object in Hand

Figure 2: Initial set of schemas with outcomes that are not
predictable based on the observable preconditions.

As is clear from the schemas in Figure 2, the agent does
not have enough information to properly anticipate what will
happen when lifting the small object in the two different
cases. Sometimes small objects require a high amount of
muscle strain in order to be lifted, other times they do not.
This inability to anticipate what will happen serves as the
trigger for the agent to propose a new predicate, P1, whose
values will help distinguish between the two situations (sim-
ilar to Drescher’s (1991) synthetic item). P1 currently has



no content (meaning) other than it will be used to determine
the outcome of lifting small objects in the described context
(Figure 3).

P1=?
Muscle Strain = high

Muscle Strain = low

Figure 3: New predicate P1 – has the function of determin-
ing outcome of lifting small objects (context), but currently
has no associated conditions for determining its value.

Given this “empty” predicate, the agent now tries to find
the conditions which would serve to consistently determine
what the non-observable present value of the predicate is
(which, in turn, will determine what the outcome of lift-
ing small objects will be). (Note that the “empty” predi-
cate currently has the function of driving the agent to search
for the conditions that determine the predicate’s state-value;
such search could consist of a random walk through the
action/state space, or be a result of other behavior of the
agent dedicated to other tasks, or could result from specific
strategies (learned or innate) for finding predicate value-
determining conditions. We do not address such strategies
here.) Suppose after some exploration, the agent discovers
that if it pushes small objects before lifting them, outcomes
of the pushing interactions serve to determine what the out-
come of lifting those particular objects will be. And this in-
creased predictability occurs consistently when interacting
with the small objects (Figure 4).

Push Object

Object on Floor
Object in Hand

Object Moves FastObject is Small

Object on Floor

Object in Hand

Push Object

Object on Floor

Obj Moves Slowly
Object in Hand

Object on Floor
Object in Hand
Object is Small Lift Object

Object above Floor
Object in Hand

Muscle strain highObject is small

Object on Floor
Object in Hand

Lift Object Muscle strain low

Object above Floor
Object in Hand

Object is small

Object on Floor
Object in Hand

Figure 4: Discovery of consistent outcomes of pushing con-
ditioning consistent outcomes of lifting.

Now the agent has found a set of schemas that can be used
to determine under what conditions the proposed unobserv-
able predicate would have particular state-values (Figure 5).
That is, even though the initial situations are indistinguish-
able (small objects cannot be distinguished by simple obser-
vation), after carrying out a particular interaction (pushing)
with a particular small object, then going on to lift that object
will have a particular outcome. These precondition schemas
now fill-out more of the content of P1.

One might argue that at this point the agent can now jet-
tison the original predicate, simply relying on the test of
first pushing small objects before lifting them to see what
outcome is expected of subsequent lifting. Removing the
predicate, however, would make the immediate prior testing
by pushing absolutely necessary. While consistent immedi-
ate prior testing may be desireable initially (e.g., to ensure
that the suspected relationship between preconditions and
the desired ability to anticipate the outcome of a future in-

Push Object

Object on Floor

Obj Moves Slowly
Object in Hand

Object on Floor
Object in Hand
Object is Small

P1=1

Push Object

Object on Floor
Object in Hand

Object Moves FastObject is Small

Object on Floor

Object in Hand

P1=0

Figure 5: Schemas conditioning the state-value of the pred-
icate P1.

teraction does hold), we would like the agent to eventually
only need to determine the prior predicate-value setting con-
ditions once, thereafter knowing that the predicate has a cer-
tain value and all subsequent actions (e.g., lifting) will have
particular outcomes. This allows the agent to keep track of
a property of an object not directly observable, yet which
holds over time. This is a powerful addition to the agent’s
representational repertoir. For example, if a particular small
object is pushed and found to move slowly, the agent does
not need to perform this test again (or every time prior to
lifting) when the agent wants to anticipate what the outcome
of lifting will be (Figure 6).

Lift Object Muscle strain low

Object above Floor
Object in Hand

Object is small

Object on Floor
Object in Hand

P1=0

Lift Object

Object above Floor
Object in Hand

Muscle strain high
Object is small

Object on Floor
Object in Hand

P1=1

Figure 6: The “hidden state” predicate P1 can now be used
to distinguish outcomes of situations that are currently ob-
servationally identical.

It is also not a problem that there are some predicates
whose values are not stable over time. Some predicates, for
example, may only hold a particular value for a short amount
of time; others may change their vlaues based on other con-
ditions. The conditions under which these values change are
conditions that the agent would need to further explore and
discover in order to make accurate predictions. But they are
not in principle unattainable within this framework.



In the above thought experiment, the agent discovered
that the outcome of pushing could reliably condition the ex-
pected outcome of lifting. But the discovery did not need
to happen in this order. For example the agent could have,
and still can, discover that the outcome of lifting is a reli-
able predictor of outcomes of pushing. If this was an ad-
ditional discovery, a new predicate (P2) could be posited.
However, because of the strong symmetry between pushing
determining lifting and vice versa, the two predicates could
be reduced to a single predicate whose value could be deter-
mined by either initial action tests (in turn determining what
the other action outcome would be). Now, a single unified
predicate, P3, would have the value 1 when either lifting in-
volved high muscle strain or pushing resulted in slow move-
ment of the object, and a value of 1 would predict either
outcome as well.

In fact, the use of this symmetry holds generally for
any hidden properties, states or processes that may gov-
ern many different potential observable situations. As men-
tioned above, mass plays an important role in determining:
(a) the outcome of muscle proprioreceptive feedback while
lifting, (b) the amount of pushing force to bring an object
on a surface to some velocity, (c) the kind of haptic feed-
back when objects are dropped on our feet, and (d) how long
an object might move before coming to rest after a certain
amount of force has been imparted to it. Because of the sym-
metries in the determining relationships between these dif-
ferent situations (as each is used to alternatively predict the
others), they may all be unified into one general predicate,
whose value could be determined by particular outcomes of
any one of the individual schema action tests (Figure 7).

proprioceptive
feedback when
lifted

haptic feedback
when dropped
on foot

force to
achieve
velocity 

rate of
deceleration

MASS

Figure 7: In the terminology of graphical models, the mass
of an object renders the other observations conditionally in-
dependent.

It is here that we see the real power of keeping the pro-
posed representational predicate: after learning of the con-
nections between these different outcomes in different situ-
ations, a single outcome in one situation will immediately
determine the outcome of all the others. This also demon-
strates another feature of this model, again related to the base
mutability of the content (the meaning or semantics) of the
predicate: the agent’s understanding of what the predicate
represents slowly evolves as new relationships between ini-
tially independent outcomes are discovered. Certainly, the
content of the predicate representation is not determined by
the correspondence that it may in fact have with the true
property of mass in the world. Also, we have been careful
not to call any one of these predicates “mass”, as though that
predicate exhaustively captured all of the semantics of the

term mass as scientifically understood today. Still, we can
see a clear trajectory headed in that direction, as new mass-
determined relationships are discovered and unified under
the developing predicate’s semantics.

This is a natural segue to considering the powerful role
language plays in representational development – particu-
larly predicate discovery of the kind described here. Lan-
guage can provide labels for these theoretical entities and
can serve a structuring role in helping the agent learn about
other theoretical entities, as well as facilitate unification. For
example, use of linguistic labels by other language users can
help to focus attention on specific aspects of the environment
requiring explanation; merely hearing the use of a term nat-
urally leads one to seek an understanding of what that term
refers to or how it is properly used. Or, having learned a
term that the agent suspects refers to a property that its pred-
icate represents, the agent may then test whether their use
of the term following this grounding in their predicate rep-
resentation is correct and/or complete. In general, language
provides a proliferation of tools for positing, analyzing and
evaluating theoretical entities – useful both for the agent by
itself, and in its social interactions. Language greatly im-
proves the speed and correctness of predicate discovery and
refinement in children, and should for our would-be epis-
temic machines as well.

(A final note: We are not making a positivist claim that all
theoretical entities are to be understood as defined in terms
of observables. Rather, our claim is that, in the limit case
of no prior knowledge (such as neonates and our machines),
this is the base mechanism by which theoretical entities are
discovered, understood and grounded. We do need ground-
ing in observables (derived from potentially ellaborate histo-
ries of interaction) in order to have some idea of what values
those hidden states might currently have – this is no differ-
ent than the idea of measurement in science. But the ultimate
ontological status of the entities, processes or properties that
these predicates might represent, while informed by, are not
determined by the predicate values and how they’re deter-
mined; the former are futher inferences made as part of the
logic and structure of a scientific theory.)

Concluding Remarks

Science, of course, has developed an ellaborate logic for
investigating theoretical entities and the conditions under
which they are posited and evaluated. Also, given an al-
ready robust base of knowledge about how the world works,
positing of theoretical entities may involve ellaborate use of
analogy and metaphor, borrowing from already well-known
environmental structure (this would involve whole structures
being transfered to the new situation, not just single predi-
cate invention; e.g., (Gentner 1989)). Nonetheless, we claim
that the above account forms the foundation for ground-
ing discovery and semantics of representation of theoretical
entities in the limit of no prior knowledge; and we claim
that this form of representation and discovery mechanism is
likely present in all systems that make the leap from purely
sensorimotor representation to ellaborated representation of
the environment that includes unobservable causal structure.



At the core, this mechanism, by which an agent can posit
and refine theoretical entities, is funded by a repesentational
substrait that (a) accommodates recognition of failure to an-
ticipate (predict) how the world will behave, and (b) accom-
modates new proposed predicate representations that have
extensable and revisable content. As we have shown, the
base schema data structure, with its integral relationship be-
tween preconditions, actions, and postconditions, is suit-
able for both of these requirements: (a0) in the schema, the
agent’s own action, indexed by preconditions, entails out-
come conditions (effects), allowing the agent to test for it-
self whether its own representations are true or false – that
is, these repesentations bear a truth value that is detectable
by the system itself, while also contingent on the environ-
mental category (in this case, the potential unobserved state,
process or property) that the predicate is intended to antic-
ipate (see (Bickhard 1993)); and (b0) the conditions under
which the value for a predicate is determined is based on
an evolving set of “triggering” conditions, in turn based on
other schemas – these triggering conditions constitute the
evolving content (meaning) of that predicate.

Acknowledgements
This research is supported by DARPA contract #DASG60-
99-C-0074. The U.S. Government is authorized to re-
produce and distribute reprints for governmental purposes
notwithstanding any copyright notation hereon. The views
an conclusions herein are those of the authors and should not
be interpreted as necessarily representing the official poli-
cies or endorsements either expressed or implied, of DARPA
or the U.S. Government.

References
Bickhard, M. H. 1993. Representational Content in Hu-
mans and Machines. Journal of Experimental and Theo-
retical Artificial Intelligence 5:285-333.

Drescher, G. L. 1991. Made-Up Minds. MIT Press.

Gentner, D. 1989. The Mechanisms of Analogical Learn-
ing. In Vosniadou, S., and Ortony, A., eds., Similarity
and Analogical Reasoning (pp.199-241). Cambridge Uni-
versity Press.

Gopnik, A., and Meltzoff, A. N. 1997. Words, Thoughts,
and Theories. MIT Press.
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